Strong Convergence of Solutions to Nonautonomous Kolmogorov Equations

نویسندگان

  • LUCA LORENZI
  • ALESSANDRA LUNARDI
چکیده

We study a class of nonautonomous, linear, parabolic equations with unbounded coefficients on Rd which admit an evolution system of measures. It is shown that the solutions of these equations converge to constant functions as t → +∞. We further establish the uniqueness of the tight evolution system of measures and treat the case of converging coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Dynamic of a Nonautonomous

Nonlinear difference equations of higher order are important in applications; such equations appear naturally as discrete analogues of differential and delay differential equations which model various diverse phenomena in biology, ecology, economics, physics and engineering. The study of dynamical properties of such equations is of great importance in many areas. The autonomous difference equat...

متن کامل

Carrying simplices in nonautonomous and random competitive Kolmogorov systems

The purpose of this paper is to investigate the asymptotic behavior of positive solutions of nonautonomous and random competitive Kolmogorov systems via the skew-product flows approach. It is shown that there exists an unordered carrying simplex which attracts all nontrivial positive orbits of the skewproduct flow associated with a nonautonomous (random) competitive Kolmogorov system. © 2008 El...

متن کامل

OnWeak Convergence, Malliavin Calculus and Kolmogorov Equations in Infinite Dimensions

This thesis is focused around weak convergence analysis of approximations of stochastic evolution equations in Hilbert space. This is a class of problems, which is sufficiently challenging to motivate new theoretical developments in stochastic analysis. The first paper of the thesis further develops a known approach to weak convergence based on techniques from the Markov theory for the stochast...

متن کامل

Convergence in Almost Periodic Fisher and Kolmogorov Models

We study convergence of positive solutions for almost periodic reaction diffusion equations of Fisher or Kolmogorov type. It is proved that under suitable conditions every positive solution is asymptotically almost periodic. Moreover, all positive almost periodic solutions are harmonic and uniformly stable, and if one of them is spatially homogeneous, then so are others. The existence of an alm...

متن کامل

Convergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral ‎Equations‎

‎‎In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015